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Abstract: Deep learning techniques have, to a certain extent, solved the problem of overreliance
on clinical experience for traditional acupoint localization, but the accuracy and repetition rate of
its localization still need to be improved. This paper proposes a hand acupoint localization method
based on the dual-attention mechanism and cascade network model. First, by superimposing the
dual-attention mechanism SE and CA in the YOLOv5 model and calculating the prior box size
using K-means++ to optimize the hand location, we cascade the heatmap regression algorithm
with HRNet as the backbone network to detect 21 predefined key points on the hand. Finally,
“MF-cun” is combined to complete the acupoint localization. The FPS value is 35 and the
average offset error value is 0.0269, which is much lower than the error threshold through dataset
validation and real scene testing. The results show that this method can reduce the offset error
value by more than 40% while ensuring real-time performance and can combat complex scenes
such as unequal lighting, occlusion, and skin color interference.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In international sporting events, athletes often suffer from overtraining or physical overload
causing excessive stress on the muscles and nervous system, resulting in injury or an inability to
continue high-intensity competition [1]. In Chinese medical theory [2], acupuncture points are
considered to be special points in the body that can be stimulated to regulate the overall balance
of the body and can help relieve pain and inflammation caused by overexertion of muscles and
joints [3]. Traditional acupuncture point positioning relies excessively on clinical experience,
resulting in “no expertise” or “no professional equipment” to find the correct point and miss the
best treatment time, thus reducing the therapeutic effect.

Applying deep learning techniques in medicine has become widespread [4], bringing new
opportunities and challenges to medical research and clinical applications. Deep learning
techniques can aid in image analysis, disease diagnosis, genomics, and drug discovery. For
example, Lai et al. [5] proposed a YOLOv5× 6 model for rapidly detecting surgical gauze,
allowing for real-time gauze tracking in laparoscopic surgery and assisting surgeons in recalling
missing gauze positions. Weng et al. [6] introduced the WSYOLO model for recognizing dental
imprints and clefts and their corresponding locations, helping doctors assess patient conditions.
Li et al. [7] developed a hybrid deep learning network algorithm that uses Fast R-CNN to extract
the tongue region, further calibrates and segments the region with VGG, and finally, employs
GoogLeNet to judge a person’s physical condition based on tongue images. Ragodos et al. [8]
utilized convolutional neural networks and transfer learning to classify dental abnormalities and
conducted corresponding evaluations.

Furthermore, numerous researchers have found that acupoint localization, which used to be
a challenging problem with traditional methods, is no longer limited. By introducing deep
learning techniques, acupoint localization can not only improve accuracy but also make acupoint
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stimulation more intelligent and personalized, contributing positively to patients’ rehabilitation
treatments. Currently, deep learning-based acupoint localization methods can be divided into
two categories. The first category is the direct method, which involves creating datasets with
acupoints as data labels based on supervised learning principles. By iteratively training, testing,
and validating the datasets, the acupoint coordinates are mapped onto the target objects. For
example, Sun et al. [9] trained a homemade acupoint dataset to locate acupoints on the forearm
and proposed an offset error evaluation method for assessing acupoint localization accuracy.
Lan et al. [10] used a 3DMM face model and trained it with predefined acupoint labels to
accomplish acupoint localization for different faces. The second category is the indirect method,
which combines regression models to obtain human key points/skeletal points. By establishing a
connection between the acupoint coordinates defined by the WHO (World Health Organization)
[11] and the skeletal points, the acupoint positions with detection regions are calculated using
spatial geometric coordinates and mapped onto the target objects. For example, Masood et
al. [12] proposed a three-dimensional prediction method for hand acupoints by integrating
RGB-CNN and depth-CNN. They used Mediapipe technology to obtain key points on the hand
and transformed them into acupoints using the “cun” measurement from traditional Chinese
medicine theory, achieving hand acupoint localization. Zhang et al. [13] utilized face-mesh
and hair-segmentation models for face and hair segmentation and determined the position of ear
acupoints. By calculating the “cun” measurement through face alignment, they obtained a set of
points on the unconstrained ears, ultimately identifying ear acupoints. Chan et al. [14] proposed
an SSD MobileNet deep learning network approach to detect body parts and calculated multiple
acupoints on the arm by incorporating the “cun” measurement.

Each of the above acupoint location methods has its own advantages in the process of use.
The direct method, by virtue of its own characteristics, can find acupuncture point locations
faster, but because the human body varies in size and skeleton, it is not possible to accurately
locate acupuncture points or even invalidate them for user groups not in the database, and its
repeatability rate is low. Additionally, similar to smaller areas such as the hands and face where
there are adjacent acupuncture points in close proximity, the direct method has difficulty mapping
acupuncture points. The indirect method has strong scalability and can evolve all acupoint
through individual key points, but currently, the overall accuracy is low and causes the position of
acupoint to shift or even fail in the presence of unequal lighting, occlusion, and complex scenes.

To address the problem of hand acupoint localization based on the indirect method, this paper
proposes a cascade network model with a superimposed dual-attention mechanism to ensure
real-time performance while improving acupoint localization accuracy. Through experiments,
the performance of the model in this paper is tested, and the feasibility of the method is verified
by the offset error and other indicators.

2. Method

2.1. System architecture

To reduce the offset error, optimize the output of acupuncture points, and avoid the error caused
by the assimilation of hand feature points by the external environment, this paper extracts
feature points efficiently by superimposing a dual-attention mechanism, discards the single
network regression algorithm and adopts a cascaded network model approach to achieve box
selection before finding points. The main architecture in this paper is the cascaded SC-YOLOv5
algorithm and the heatmap regression algorithm with HRNet as the backbone network to detect
21 predefined key points on the hand in real scenes. In the detection process, the real-time images
captured by the camera are fed into the SC-YOLOv5 algorithm network for detection, and the
hand prediction bounding boxes are generated after several convolution and pooling operations.
The predicted bounding box is used as the input for the next stage of key point regression, and
the corresponding heatmap is generated by each branch in the HRNet network. The different
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resolution heatmap outputs from HRNet are fused to obtain a unified, high-precision heatmap,
and the 21 predefined key point locations of the hand are marked in the image. To capture the
hand acupuncture points, this paper combines the relationship between each acupuncture point
and hand key points and “MF-cun”, converts the 21 predefined key points to 2D coordinates
using OpenCV, calculates the coordinates of hand acupuncture points, and maps acupuncture
points. The system network architecture of this paper is shown in Fig. 1.

Acupoint
visualization

HRNet

Middle finger
cun

SC-YOLOv5

Input Output-Input Output

Heatmap

Fig. 1. System framework.

2.2. YOLOv5 network

YOLOv5 (you only look once version 5) [15] is a lightweight and novel network that treats object
detection as a regression problem for classification and localization, enabling real-time detection
and object classification in images. Compared to other versions, the YOLOv5 algorithm shows
excellent performance in terms of detection accuracy and speed. Its structure can be divided
into three parts: backbone, neck, and head [16]. Backbone CSPDarkNet is the base network,
and its CSP (cross-stage partial connection) network structure ensures information flow while
reducing computational complexity and improving detection speed. The neck module employs
an FPN (feature pyramid network) [17] and PAN (path aggregation network) [18] for feature
extraction and fusion. FPN extracts high-dimensional semantic information through top-down
feature fusion, while PAN aggregates information from different levels of features in a bottom-up
manner to capture detailed information and enhance detection accuracy. The head module adopts
an anchor-free-like design, consisting of a classification module, a regression module, and an
SPP (spatial pyramid pooling) module. The classification and regression modules fully extract
features from various feature layers, and the SPP module performs multiscale cascaded pooling
on the feature maps to further enhance detection performance. Currently, there are four versions
of YOLOv5, namely, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. The four versions have
the same network structure, different parameters, and different performance and speed. In this
paper, the algorithm needs to be real-time while improving the accuracy, so YOLOv5s, which
has the fewest parameters and is relatively the fastest, is selected.

2.3. Attention mechanism

This section introduces two attention mechanisms: squeeze-and-excitation (SE) [19] and
coordinate attention (CA) [20].

SE enables the network to adaptively focus on important feature channels and reduce the
reliance on unimportant feature channels by learning the weights among channels, which helps to
improve the feature representation and robustness of the network and achieve better performance
in various vision tasks. SE involves both squeezing and excitation processes.
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In the squeezing process, global average pooling is applied to encode all spatial features on
each channel into a global feature. The output feature map has dimensions of 1 × 1 × C, and the
information for each channel Zc is determined by Eq. (1).

Zc =
1

H × W

H∑︂
i=1

W∑︂
j=1

uc(i, j) (1)

where H and W are the spatial dimensions and uc is the feature mapping obtained from the
convolution of each channel.

During the excitation process, the relationship between different channels is obtained in the
fully connected layer by the activation function sigmoid, and the importance of each channel is
predicted to obtain the excitation weights. Finally, the excitation weights are multiplied with the
original feature map in terms of elements for the recalibration of channel features.

CA provides the model’s ability to perceive the location information in the input data for
modeling spatial structure, improving spatial perception performance, handling scale changes
and improving long-term dependence. Its structure consists of coordinate information embedding
and coordinate attention generation.

In coordinate embedding, horizontal direction is encoded by applying a one-dimensional
convolution operation along the vertical dimension of the feature tensor, resulting in the
corresponding horizontal encoding feature. Similarly, vertical direction is encoded by applying
a one-dimensional convolution operation along the horizontal dimension of the feature tensor,
resulting in the corresponding vertical encoding feature. After embedding the coordinate
information, the horizontal encoding feature and vertical encoding feature are used to generate an
attention map that represents the target location information. This is achieved by performing an
outer product operation between the horizontal encoding feature and the vertical encoding feature,
resulting in an attention map. Finally, the generated attention map is elementwise multiplied
with the input feature map to obtain a weighted feature map.

2.4. Optimization and improvement of YOLOv5

SE allows the network to automatically learn the weights for each channel, focusing more
attention on channels with richer information. However, it only considers the interdependencies
between channels and neglects spatial features. CA captures interchannel dependencies as well
as direction-aware and position-aware information, thus compensating for the limitations of SE.
Therefore, in this paper, adding a dual-attention mechanism (SE-CA) in the C3 module of the
YOLOv5 model is proposed, and the improved C3 module is named “SC-C3”, as illustrated in
Fig. 2(c).

The bottleneck in the original C3 module has three main components, as shown in Fig. 2(a).
First, the initial feature map is passed through a 1× 1 convolutional layer (CBS,Conv-BatchNorm-
SiLU) to obtain FA (feature map A). Then, FA is passed through a 3 × 3 convolutional layer to
obtain FB, and FB is added with the initial feature map to obtain the final output FC.

In this paper, the dual-attention mechanism is superimposed after the 3× 3 convolutional layer
of bottleneck and named BottleNeck* with the structure shown in Fig. 2(b). First, the initial
feature map is passed through a 1 × 1 convolution layer to obtain FA and then a 3 × 3 convolution
layer to obtain FB. Second, FB is passed to SE as input for global average pooling, converting the
multichannel feature map into a vector of channels, mapping the output of the fully connected
layer to weights between 0 and 1 using a sigmoid function, and multiplying the weights with
FB at the element level. FB is passed to the CA as input, and the weights are determined by the
sigmoid function as weights on the channel dimension and weighted summed with each channel
of FB to obtain FE weighted by the attention of the CA. FD and FE are weighted and summed to
obtain FF . Finally, FF is summed with the initial feature map to obtain the final output FC′ . The
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Fig. 2. (a) Original BottleNeck module, (b) improved BottleNeck* module, and (c) SC-C3
module.

weighted summation of FF is determined by Eq. (2).

FF = α × FD + β × FE (2)

where α and β are hyperparameters that control the attention weights of SE and CA.
Based on the SC-C3 module proposed above, inserted into the backbone of the YOLOv5

model, the improved model structure is shown in Table 1.

2.5. K-means++ optimizes priori box size

The model converges more easily when the size and scale of the a priori box are closer to the
real bounding box. This is because the model can match the target object more accurately and
reduce the prediction error by training the prior box parameters similar to the real bounding
box. The prior box parameters of the original YOLOv5 model are calculated by matching the
COCO dataset through the K-means algorithm [21], and its initial clustering centers are randomly
selected, which are prone to fall into local minima, affecting the clustering effect of the bounding
box size. K-means++ [22] clustering algorithm is an optimization algorithm based on K-means
algorithm. Its main purpose is to improve the selection of initial points to make the anchor
box size of the training dataset more appropriate and to improve the accuracy of the model in
detecting objects. Therefore, we selected the K-means++ clustering algorithm as the priori box
clustering method. The steps are as follows:

S1: Randomly select a sample from the dataset as the initial cluster center C1.
S2: Calculate the minimum distance D(x) between each sample and the existing cluster centers.
S3: Compute the probability P of each sample being selected as the next cluster center and

choose the sample with the highest probability as the next generation cluster center, determined
by Eq. (3) in the paper.

P =
D(x)2∑︁n

i=1 D(xi)
2 (3)

S4: Repeat the work of S2 and S3 until 9 cluster centers are determined.
The prior box size parameters calculated according to the K-means++ and the original

parameters by K-means are shown in Table 2.
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Table 1. SC-YOLOv5 model structure

Num From Params Module Arguments

0 -1 3,520 Conv [3, 31, 6, 2, 2]

1 -1 18,560 Conv [31, 64, 3, 2]

2 -1 14,584 SCC3 [64, 64, 1]

3 -1 73,984 Conv [64, 128, 3, 2]

4 -1 167,688 SCC3 [128, 128, 2]

5 -1 295,424 Conv [128, 256, 3, 2]

6 -1 656,328 SCC3 [256, 256, 3]

7 -1 1,180,672 Conv [256, 512, 3, 2]

8 -1 656,896 SPP [512, 512, 5, 9, 13]

9 -1 526,336 SCC3 [512, 512, 1]

10 -1 131,584 Conv [512, 256, 1, 1]

11 -1 0 Upsample [None, 2,’nearest’]

12 [-1, 6] 0 Concat [1]

13 -1 361,984 C3 [512, 256, 1, False]

14 -1 33,024 Conv [256, 128, 1, 1]

15 -1 0 Upsample [None, 2,’nearest’]

16 [-1, 4] 0 Concat [1]

17 -1 90,880 C3 [256, 128, 1, False]

18 -1 147,712 Conv [128, 128, 3, 2]

19 [-1, 14] 0 Concat [1]

20 -1 296,448 C3 [256, 256, 1, False]

21 -1 590,336 Conv [256, 256, 3, 2]

22 [-1, 10] 0 Concat [1]

23 -1 1,182,720 C3 [512, 512, 1, False]

Table 2. Anchors parameter

Feature Map Size(K-means++) Size(K-means)

Small (7,10) (19,12) (25,30) (10,13) (16,30) (33,23)

Middle (15,20) (40,26) (53,62) (30,61) (62,45) (59,119)

Large (129,85) (96,175) (143,287) (116,90) (156,198) (373,326)

2.6. Hand keypoint – heatmap regression

Heatmap regression, typically performed using convolutional neural networks (CNNs), is trained
and predicted in specific network architectures chosen and optimized based on task requirements
and dataset characteristics. Commonly used heatmap regression networks include HGNet (the
hourglass network) [23], CPN (network with cross-pose) [24], OpenPose [25], AlphaPose [26],
and HRNet [27]. In this paper, following the method described in Ref. [28], HRNet is chosen as
the backbone network for heatmap regression and trained on a dataset of hand images to obtain
21 predefined key points [29], as shown in Fig. 3.

HRNet is a high-resolution network structure that employs a multibranch parallel approach,
where each branch is responsible for extracting semantic features at different scales and levels.
During heatmap regression, the position of each key point can be viewed as a Gaussian distribution
on the heatmap. These distributions are stacked together with the feature maps, and accurate
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Fig. 3. Twenty-one predefined key points of the hand.

key point localization results are obtained through multilevel feature fusion. Compared to other
network architectures, HRNet offers higher computational efficiency and improved accuracy.
It effectively integrates information from different scales in the image, leading to further
improvements in accuracy.

Table 3. Acupoints on the palm of the hand

Num Acupoint Acupoint location

1 Xiao chang dian The midpoint of the transverse line between the first and second phalanges of the index
finger

2 Da chang dian The midpoint of the transverse line between the second and third phalanges of the index
finger

3 Xin dian The middle point of the transverse stripes between the second and third phalanges

4 Zhong chong The midpoint of the fingertip, approximately 0.1 cun from the free edge of the nail

5 San jiao The middle point of the transverse stripes between the first and second phalanges of the
middle finger

6 Fei dian The middle point of the transverse stripes between the second and third phalanges of the
ring finger

7 Gan dian The middle point between the first and second phalanges of the ring finger

8 Shen dian The middle point of the transverse stripe of the second knuckle of the little finger

9 Shao fu Between the fourth and fifth metacarpals, when making a fist, when the tip of the little
finger

10 Lao gong The second and third metacarpal bones are biased to the third metacarpal bones, and the
middle fingertips are clenched when the fingers are flexed

Table 4. Acupoints on the back of the hand

Num Acupoint Acupoint location

1 Da gu kong The midpoint of the transverse line of the interphalangeal joint of the thumb

2 San jian The second metacarpophalangeal joint of the hand

3 Shang yang The distal radial side of the index finger is 0.1 cun from the nail angle

4 He gu Between the first and second metacarpals, the midpoint of the radial side of the second
metacarpal

5 Zhong kui The midpoint of the transverse line of the second joint

6 Ye meng The fourth and fifth fingers, refers to the rear of the webbed edge of the red and white
flesh

7 Guan chong The ulnar end of the ring finger of the hand, 0.1 cun from the nail angle

8 Shao chong 0.1 cun posterior to the corner of nail on little finger’s radial side

9 Shao ze Distal ulnar side of little finger, 0.1 cun above the corner side of nail root

10 Yang chi On the dorsal wrist stripe, in the ulnar depression of the extensor tendon
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2.7. Definition of hand acupuncture points

There are four main methods for acupoint localization in the human body, including surface
anatomy landmarks, bone proportional measurement, finger cun measurement, and simplified
methods (empirical methods) [11]. To improve the accuracy and robustness of hand acupoints
localization while ensuring real-time detection, this paper selects the “MF-cun” (middle finger
cun) method as the basis for acupoint localization. The “MF-cun” method considers the distance
between the transverse creases at the ends of the inner side of the middle finger’s middle joint
when the finger is flexed as 1 “cun”, which can be used for direct measurement of acupoints
on the limbs and transverse measurement of acupoints on the back. In this paper, the distance
between numbered 10 and numbered 11 in Fig. 3 is defined as the “cun” distance.

In this paper, the cascade deep learning algorithm is combined with “MF-cun” for accurate
localization of hand acupoints. In Tables 3 and 4, the names and corresponding location
information of 20 acupuncture points in the palm and dorsal region of the hand are described and
marked with different color dots, as shown in Fig. 4.

Fig. 4. Acupoints on the palm and back of the hand.

3. Results

3.1. Experimental environment

The hardware environment for this study consists of an Intel Core i7-10700 CPU @ 2.90 GHz,
16 GB of RAM, and Windows 10 64-bit operating system. The study utilizes the PyTorch 3.7.11
framework, CUDA version 10.2, and cuDNN version 7.6.5. The initial learning rate is set to
0.001, and the training process runs for 300 epochs.

3.2. Experimental dataset building

To validate the applicability of the proposed SC-YOLOv5 network model in real-world scenarios
and the effectiveness of the overall approach, this study requires the creation of a corresponding
dataset for training and testing. The dataset consists of HaGRID [30], 11 K Hands [31], and the
Large-scale Multiview 3D Hand Pose Dataset [32]. Based on different hand gestures, different
illumination levels and different skin tones as filtering conditions, HaGRID adopts 3,500, 11 K
Hands adopts 1,500 as the target detection dataset, and the Large-scale Multiview 3D Hand Pose
Dataset adopts 2,000 as the key point detection dataset (the dataset has 21 keypoints of the hand).
A sample of the dataset is shown in Fig. 5.

To ensure accurate positioning, the data annotation software LabelMe is employed to precisely
select and annotate the specific hand positions within the datasets. The annotated datasets are
then divided into training and validation sets in an 8:2 ratio, facilitating subsequent evaluation
and testing processes.
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(a)

(b)

(c)

Fig. 5. Captured dataset: (a) Sample image from the HaGRID dataset, (b) Sample image
from the 11 K Hands dataset, and (c) Sample image from the Large-scale Multiview 3D
Hand Pose Dataset.

3.3. Visualization of hand acupoints

A random selection of individuals without hand disorders, aged between 20 and 30, was used
to perform the detection of hand acupoints. To accurately evaluate the detection performance
of the model and validate its robustness in real-world scenarios, this study conducted tests in
different scenarios, including variations in lighting conditions, complex backgrounds, skin color
interference, and occlusions. The results are shown in Fig. 6, showing from left to right the dorsal
hand points, the reverse process points, and the palm points. The palm and back of the hand
regions each show 10 different acupuncture points. The experiment proves that the algorithm in
this paper has excellent robustness in all complex scenes and has certain antiocclusion capability,
which can accurately return the acupoint on the palm and back of the hand to complete acupoint
localization.

3.4. Evaluation parameter

To further validate the effectiveness of the proposed improvements to YOLOv5 and the efficacy
of the method for hand acupoints localization, this section introduces quantitative evaluation
metrics. For the SC-YOLOv5 algorithm, the following performance metrics are primarily utilized:
precision (P), recall (R), F1 score, average precision (AP), mean average precision (mAP) and
frames per second (FPS). These selected metrics are widely used in optical recognition tasks
to evaluate detection accuracy. The calculation for the aforementioned performance metrics is
presented in Equations (4-9).

Precision(P) =
True Positive

True Positive + False Positive
(4)

Recall(R) =
True Positive

True Positive + False Negative
(5)

F1 =
2 × P × R

P + R
(6)

Average Precision(AP) =
∫ 1

0
P(r)dr (7)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 6. Hand gesture detection results in real-world scenarios: (a) Normal light, (b) presence
of occlusion, (c) bright light, (d) cluttered background, (e) wearing gloves, (f) overlapping
with arm, (g) long-shot, and (h) different color backgrounds.

Mean Average Precision(mAP) =
1
n

n∑︂
i=1

APi (8)

Frames Per Second(FPS) =
1

preprocess + inference + NMS
(9)

where true positive is the number of positive samples detected as positive, false positive is the
number of negative samples detected as positive, false negative is the number of negative samples
detected as negative, preprocess is the image preprocessing time, inference is the inference time,
and NMS is the non-maximum suppression processing time.

To validate the effectiveness of the cascade network model combined with the “MF-cun”
method for hand acupoint localization, it is necessary to ensure that the detected acupoint errors
do not exceed their respective thresholds. However, due to the presence of varying scales in
the images, direct measurement of errors using Euclidean distance is not feasible. Therefore,
normalization is needed. In this study, the offset error is evaluated based on the approach
described in [9], and its numerical value is determined using Eq. (10).

offset error =
| |pi − p̂i | |2

d
(10)

In the equation, pi represents the true acupoint label, ˆ︁pi represents the predicted acupoint label,
and d is the scale normalization factor. In this study, the distance of d is determined as the
distance between the labeled points 0 and 12, as indicated in Fig. 3.

3.5. Evaluation results of the SC-YOLOv5 algorithm

During training, based on the dataset partitioning, the loss variations are shown in Fig. 7. The result
value for train/boxloss is approximately 0.0097, and for train/objloss, it is approximately 0.0055.
The values for val/boxloss and val/objloss are approximately 0.018 and 0.0076, respectively.

According to the statistical data in Table 5, the SC-YOLOv5 model, improved through the
approach described in Table 1, performs well in the evaluation metrics. The algorithm achieves
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Fig. 7. Loss variation: (a) boundary loss on the training set, (b) average object detection
loss on the training set, (c) boundary loss on the validation set, (d) average object detection
loss on the validation set.

an accuracy of 97.75% on the validation set, showing an improvement of 1.97% compared
to the original YOLOv5 model. It also outperforms SE-YOLOv5 (with only the SE attention
mechanism) and CA-YOLOv5 (with only the CA attention mechanism). In addition, we also
conducted a comparison of K-YOLOv5 (K-means++ clustering algorithm with improved a priori
box parameters) with the original YOLOv5, which shows a slight improvement in all metrics,
e.g., Precision is improved by 0.05% and Recall is improved by 0.11%. The feasibility of using
K-means++ clustering algorithm in Section 2.5 is further demonstrated.

Table 5. The experimental effects of different networks

Model AP/% Precision/% Recall/% F1 mAP@0.5/% FPS

YOLOv5s 91.92 95.78 93.32 94.64 96.29 76.4

K-YOLOv5 91.98 95.83 93.44 94.69 96.31 75.7

SE-YOLOv5 92.47 95.86 93.49 94.66 96.33 51.5

CA-YOLOv5 92.53 96.01 93.67 94.82 96.35 47.5

YOLOv8n 89.26 93.88 87.64 90.65 91.09 10.5

YOLOv8s 94.56 98.33 92.78 95.47 96.99 5.4

SC-YOLOv5 93.68 97.75 95.69 96.71 97.15 39.33

It is worth noting that SC-YOLOv5 is on par with YOLOv8 in terms of accuracy, but SC-
YOLOv5 (39.99 fps) outperforms YOLOv8 (5.4 fps) in terms of real time, which suggests that
the improved model in this paper can accurately detect the hand position while guaranteeing
real-time performance.

3.6. Results of acupoint detection and evaluation

In this study, during the calculations, the normalization factor “d” is determined to be 18 cm.
Sun et al. [9] mentioned that the finger contact area during pressing is 2 cm, and Lin et al.
[33] suggested maintaining a safe distance of 3 cm from acupoints during moxibustion. To
accommodate these conditions, this study takes pi − ˆ︁pi2 as 2 cm and calculates the offset error
threshold as 0.111 using Eq. (10).



Research Article Vol. 14, No. 11 / 1 Nov 2023 / Biomedical Optics Express 5976

Based on the proposed method in this study for detecting hand acupoints, 200 sets of coordinate
data are randomly selected as predicted acupoint values, while the true acupoint values are
manually labeled values from Table 4 and Table 5. The average offset error (AOE) for each hand
acupoint is calculated by combining Eq. (10). The results are shown in Table 6. From Table 6,
it can be observed that the overall range of offset errors using this method is between 0.01 and
0.06, with an AOE of 0.0269. The relatively higher AOE for acupoints such as “lao gong”, “shao
fu”, “shao ze” and “shao chong” are due to the inherent deviations in the “MF-cun” calculation
process, but the overall fluctuations are not particularly significant.

Table 6. Average offset error value of acupoint

Acupoint AOE Acupoint AOE

xiao chang dian 0.0158 Da gu kong 0.0108

da chang dian 0.0135 San jian 0.0323

Xin dian 0.0119 Shang yang 0.0393

Zhong chong 0.0187 He gu 0.0325

San jiao 0.0276 Zhong kui 0.0154

fei dian 0.0281 Ye meng 0.0329

gan dian 0.0152 Guan chong 0.0122

Shen dian 0.0199 Shao chong 0.0534

Shao fu 0.0430 Shao ze 0.0586

Lao gong 0.0489 Yang chi 0.0198

In addition, Table 7 provides a comparison of acupoint localization based on different
algorithms, focusing on detection areas such as the face, forearm, ear, and hand. References
[9,10] employ direct methods for acupoint localization, while Refs. [12–14] and this study utilize
indirect methods. Among them, Refs. [10,13] mention the ability to resist partial occlusion
during acupoint detection. The localization method described in Ref. [10] is applied to mobile
devices, resulting in slightly lower FPS.

Table 7. Compare the different methods of locating acupoints

References Surveyed
area

Gordian technique Resistant
occlusion

AOE FPS Limitation

Sun et al. [9] Forearm VGG-19 and acupoint
database

NO – – Requires presetting
acupoint locations

Lan et al.
[10]

face 3DMM and Landmark
detection

YES – 7.5 Requires presetting
acupoint locations

Masood et al.
[12]

hand Feature extraction and
landmark detection
based on CNN

NO 0.0532 – Hand needs to be
stretched

Zhang et al.
[13]

Ear Ear recognition
framework and B-cun

YES 0.039 30 The acquisition of
acupoint locations relies
on facial alignment

Chan et al.
[14]

Forearm SSD MobileNet and
Mesh generation

NO 0.0585 – The acquisition of
acupoint locations relies
on grid generation

Present study hand Based on SC-YOLOv5
and HRNet dual network
models and “MF-cun”

YES 0.0269 35 The tested hands need to
meet no mutilation
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4. Discussion and summary

The proposed method in this paper utilizes a cascade deep learning network model with a stacked
dual-attention mechanism to accurately regress acupoint locations. According to the data in
Table 7, compared to other methods, the AOE of the proposed method is reduced by more than
40%. When calculating the offset error, a normalization factor is used, which depends on the
maximum size of the detection area. According to Eq. (10), under other unchanged conditions,
the smaller the normalization factor is, the larger the resulting offset error. In this study, the
normalization factor is similar to that in Ref. [13] but smaller than the value in Ref. [14].
Therefore, in terms of accuracy, the proposed method has a significant advantage.

Furthermore, as shown in Fig. 6, the proposed method is robust to uneven lighting conditions,
skin tone interference, occlusions, and other complex backgrounds. Compared to Refs. [9,10],
this paper employs an indirect method for acupoint localization, eliminating the need to establish
a large dataset or predefine acupoint locations. Compared to Refs. [13,14], the proposed
method incorporates its own “MF-cun” calculation for acupoint localization and does not require
conditions such as reference point alignment. In summary, the proposed method exhibits
significant advantages in terms of robustness.

In this paper, we propose a hand acupoint localization method based on a dual-attention
mechanism and a cascaded deep learning network model to achieve accurate localization of hand
acupoint points under complex backgrounds such as unequal illumination, presence of occlusion,
and skin color interference.

In the detection, firstly, SC-YOLOv5 is used for accurate bounding box selection of hand
locations, which greatly enhances the detection capability of hand feature points and effectively
mitigates the interference of complex backgrounds. Then, HRNet based heatmap regression
method was used to accurately regress the hand key points, and then combined with “MF-cun” to
obtain the hand acupuncture points by OpenCV calculation. Experiments show that the average
offset error of the detected acupoints is 0.0269, which is more than 40% lower than other methods.

In the future, our plans will focus on acupoint localization in user groups with limb defects or
specific medical conditions. For such user groups, due to the lack of readily available databases
and the inability of the created datasets to cover certain unique cases, it may be challenging to
accurately locate acupoints. One potential direction to address this issue is to explore techniques
such as compensatory restoration to restore the original condition of the user’s limb before
conducting acupoint localization.
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